菜单

《科学》发文评述量子反常霍尔效应实验发现  ,在霍尔效应发现100年后

2020年4月11日 - 创新快车道
《科学》发文评述量子反常霍尔效应实验发现  ,在霍尔效应发现100年后

现代工程与应用科学学院材料科学与工程系、固体微结构物理国家重点实验室、南京微结构科学与技术协同创新中心周健副教授、陈延峰教授研究组在量子化拓扑霍尔效应方面取得重要进展:该结果以”Predicted
Quantum Topological Hall Effect and Noncoplanar Antiferromagnetism in
K0.5RhO2”为题,于2016年6月20日发表在《Physical Review Letters》[116,
256601
]。现代工程与应用科学学院周健副教授和绍兴文理学院物理系梁奇锋副教授为共同第一作者,现代工程与应用科学学院陈延峰教授和台湾大学物理系郭光宇教授为共同通讯作者,北京物理所翁红明研究员、我校工学院姚淑华副教授、物理学院陈延彬副教授和董锦明教授参与了本工作。

我国科学家首次在实验中发现量子反常霍尔效应

《科学》发文评述量子反常霍尔效应实验发现  

霍尔效应(Hall
effect)是指在一个通有电流的导体中,如果施加垂直磁场,则在垂直于磁场和电流的方向上产生一个横向电压的现象。这一现象由E.
H.
Hall于1879年发现,次年他进一步发现:在铁磁导体中的霍尔效应远大于非磁材料,甚至在不加外磁场时也会有霍尔效应,被称为反常霍尔效应(anomalous
Hall
effect)。对于霍尔效应,可以用简单的洛伦磁力来解释,而本征的反常霍尔效应则需要利用电子的自旋轨道耦合和Berry曲率才能够得到解释。

  清华大学和中国科学院物理研究所4月10日在京联合宣布:

  清华新闻网4月14日电
4月12日出版的《科学》杂志在“展望”栏目刊登美国新泽西州立大学物理与天文系教授Seongshik
Oh撰写的题为“完整的量子霍尔家族三重奏”文章,对由清华大学薛其坤院士领衔,清华大学物理系和中科院物理所联合组成的实验团队,在磁性掺杂的拓扑绝缘体薄膜中,从实验上首次观测到的量子反常霍尔效应,以及此前发现的量子霍尔效应、量子自旋霍尔效应进行了评述。

在霍尔效应发现100年后,德国物理学家von
Klitzing于1980年发现了量子霍尔效应,即整数量子霍尔效应。美籍华裔物理学家崔琦则于1982年发现了分数量子霍尔效应。对应于反常霍尔效应的量子化更为扑朔迷离,直到2013年,我国清华大学和中科院物理所的研究国家才在铁磁掺杂的拓扑绝缘体(Cr掺杂2Te3)中实现了量子化反常霍尔效应(quantum
anomalous Hall effect,
QAHE),从而成为继量子霍尔效应、量子自旋霍尔效应之后的“量子霍尔效应家族的最后一位成员”。

  由清华大学薛其坤院士领衔,清华大学物理系和中科院物理研究所联合组成的实验国家最近取得重大科研突破,在磁性掺杂的拓扑绝缘体薄膜中,从实验上首次观测到量子反常霍尔效应。这一实验发现也证实了此前中科院物理研究所与斯坦福大学理论国家的预言。

  完整的量子霍尔家族三重奏

但事实上,反常霍尔效应可以更“反常”。2001年,东京大学Nagaosa教授等提出:如果一个巡游电子经过一个非共面磁结构,就会获得一个Berry相位γ=Ω/2,其中Ω=S1·(S2×S3)
代表三个自旋矢量张成的立体角,也就是scalar spin
chirality,如图1所示。这个Berry相位等效于一个外磁场,从而可以产生巨大的反常霍尔效应。人们把这种由非共面磁性所造成的反常霍尔效应称之为非常规的反常霍尔效应(unconventional
anomalous Hall effect)或者拓扑霍尔效应(topological anomalous Hall
effect,
THE)。目前人们已经在多个体系中证实了THE的存在。比如最近在室温下观察到Mn3Sn中具有的巨大的反常霍尔效应就是来自于这种非共面磁性。在Skyrmions体系中也观察到了THE。

  130多年前,美国物理学家霍尔先后发现了霍尔效应和反常霍尔效应。1980年德国科学家冯·克利青发现整数量子霍尔效应,1982年美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理奖。物理学家认为量子霍尔效应家族中也应该存在量子反常霍尔效应。但如何使其现身并在实验上观测到成为近些年凝聚态物理学家探索的重要难题之一。拓扑绝缘体这个新领域出现之后,2006年美国斯坦福大学/清华大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年提出了在拓扑绝缘体中引入磁性实现量子反常霍尔效应的可能性。

  Seongshik Oh

图片 1

  2010年,中科院物理研究所方忠、戴希研究员等与张首晟教授合作,预言了Cr或Fe掺杂的Bi2Se3,Bi2Te3和Sb2Te3族三维拓扑绝缘体薄膜是实现量子反常霍尔效应的最佳体系。要在实验上实现反常霍尔效应的量子化需要拓扑绝缘体材料同时满足三项非常苛刻的条件:材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态;材料必须具有长程铁磁序从而存在反常霍尔效应;材料的体内必须为绝缘态从而对导电没有任何贡献。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战,德国、日本、美国的科学家由于无法在材料中同时满足这三点而未取得最后的成功。

  不需要外磁场的量子霍尔态的实验观测,使人们终于能够完整地演奏量子霍尔效应的三重奏了。

图1. 三个非共面的磁矩张成一个立体角Ω。

  2009年起,由薛其坤院士带领的清华大学物理系王亚愚、陈曦、贾金锋和中科院物理所马旭村、何珂、王立莉、吕力组成的联合实验国家,与方忠、戴希、张首晟等理论物理学家合作,开始向量子反常霍尔效应的实验实现发起冲击。在过去近四年的时间里,国家生长和测量了超过1000个样品,克服了重重障碍,一步步实现了对磁性掺杂拓扑绝缘体高质量薄膜的生长、表面电子态的观测、特别是对其电子结构、磁有序态和能带拓扑结构的精密调控。2012年10月,该国家利用分子束外延生长了Cr掺杂的(Bi,Sb)2Te3薄膜,将其制备成输运器件并在极低温环境下对其磁电阻和反常霍尔效应进行了精密测量。他们发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2~25800欧姆,从而证实了此前的理论预言。该成果于北京时间3月15日以“Experimental
observation of the quantum anomalous Hall effect in a magnetic
topological
insulator
“为题,在美国《科学》杂志在线发表,清华大学物理系博士生常翠祖、张金松、冯硝和中科院物理所博士生沈洁为文章的共同第一作者。

  当电流在一个导体薄板中流动时,如果施加一个垂直于薄板平面和电流方向的外加磁场,电荷会在导体薄板内垂直于电流方向的边缘积累,产生一个横向电压VT。这个效应由Edwin
Hall在1879年发现,称为霍尔效应。由于横向电阻,又称霍尔电阻,定义为VT/I,正比于H/n,霍尔效应被广泛用来测量导电材料中的载流子类型、浓度和迁移率。然而,上个世纪八十年代人们发现,当载流子被限制在一个二维平面内运动时,在一定的外加磁场下,霍尔电阻变成了精准的常数h/(ve2),这里h是普朗克常数,e是电子电荷,v是正整数。这个现象被称为量子霍尔效应,它的实现必须有外加磁场的存在。在本期的167页,常翠祖等人的文章报道了在磁性拓扑绝缘体薄膜中,横向电阻的精准量子化甚至能够发生在没有外加磁场的情况。这个结果证实了期待已久的量子反常霍尔效应的存在,这是量子霍尔家族的最后一位成员。

目前关于这种“反常”的反常霍尔效应是否可以实现量子化,即是否存在量子化拓扑霍尔效应(quantum
topological Hall effect,
QTHE)的研究非常少。周健副教授、陈延峰教授研究组的工作第一次通过第一性原理计算预测层状Rh氧化物材料K0.5RhO2可能会具有QTHE。

  该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,国家成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,国家成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了国家自然科学基金、科技部、教育部和中国科学院等的基金资助。

图片 2

KxRhO2是一个由RhO2层和K层交替排列形成的层状材料,其中RhO2层形成二维的三角晶格。当x=0.5时,研究组通过计算并比较了大量不同磁结构的能量,发现该材料具有一个特别的磁基态:全出/全进的非共面反铁磁),该磁结构元胞为晶体学元胞的4倍(2×2×1)。从能带上看,该材料具有一个0.22
eV左右的能隙,而且在能隙中,具有量子化的反常霍尔电导σAH,。研究组计算了该体系的陈数,发现一个元胞中的陈数是2,这是因为一个元胞里有两层RhO2,每一层的陈数为1,所以总的陈数为2。理论上预言,具有非零陈数的体系可表现为内部是很好的体态绝缘性质,而在边界上存在手性拓扑导电态,可无耗散地传输电流从而极大地降低器件的能耗,因此在材料科学和电子学中具有巨大的应用潜力。

编辑:欣研

  量子霍尔家族。H表示外加磁场强度,M表示自发磁化强度。这三种量子霍尔效应中,电子都是沿着无耗散的边缘运动,材料内部是绝缘的。霍尔测量是测量一个方向的“净”电荷,对于量子霍尔效应来说,边缘的不同自旋方向的电子都是朝着一个方向运动;对于量子自旋霍尔效应来说,不同自旋方向的电子的运动方向不同;在量子反常霍尔效应中,沿边缘运动的只有自旋向下的电子。自旋和电荷运动方向的“锁定”机制和边缘通道的数量取决于材料本身,这里只说明了最简单的情况。

在上述的计算中,并没有包含自旋轨道耦合,非共面的磁结构来自于三角晶格的自旋阻错。如果进一步考虑到自旋轨道耦合的作用,则结果类似。通过简单的海森堡模型估算出该体系磁结构的奈耳温度在20
K左右,远高于目前实验上的Cr掺杂2Te3体系的温度。

  在量子霍尔效应发现不久,人们意识到这种量子化是由于在外磁场下导体内部变得完全绝缘,只有其边缘存在无耗散的一维导电通道的情况下造成的,一维无耗散通道的数量就是整数值v。这种情况下,电子只能够沿着一边向一个方向运动而无法被散射到由绝缘体态隔开的导体的另一边,因为只有另一边才有反方向的运动。当横向电阻量子化时,纵向的电阻会完全变为零。

图片 3

  当人们对量子霍尔效应的理解逐渐成熟后,问题自然出现了:这种无耗散的边缘态是否能够在没有外加磁场的情况下存在?1988年,一个理论学家预言了这种边缘态能够在二维晶格中存在。经历了近20年的探索,这种能够在无外加磁场情况下存在的无耗散边缘态首先在HgTe/CdTe量子阱材料中被发现。然而,由于缺乏外加磁场迫使电流沿单一方向流动,这种材料中同时存在顺时针和逆时针两个方向的边缘态。由于重元素中很强的自旋轨道耦合相互作用,电流方向由电子的自旋方向决定。这个现象是量子自旋霍尔效应,也就是自旋霍尔效应的量子化。

图2. K0.5RhO2的全出/全进的磁结构元胞,绿色箭头代表Rh离子磁矩的方向;
一层RhO2层形成的三角晶格及其磁矩;
一层RhO2层中四个Rh离子上的磁矩张成一个Bloch球面,其立体角为4π,因此对应的Berry相位为2π,陈数为1;
不考虑自旋轨道耦合时,全出/全进磁结构的能带图和对应的反常霍尔电导随费米能的变化;类似,但是考虑了自旋轨道耦合效应。

  如果量子自旋霍尔系统中一个方向的自旋通道能够被抑制,比如,通过铁磁性,这自然的会导致量子反常霍尔效应。铁磁导体中的霍尔电阻由正比于磁场的正常霍尔效应部分和正比于材料磁化带来的反常霍尔效应部分组成。量子反常霍尔效应指的是反常霍尔效应部分的量子化。量子自旋霍尔效应的发现极大地促进了量子反常霍尔效应的研究进程。前期的理论预言指出,量子反常霍尔效应能够通过抑制HgTe系统中的一条自旋通道来实现。遗憾的是,目前还没有能够在这个材料系统实现铁磁性,即而无法实现量子化反常霍尔效应。后来又有理论预言指出,将Bi2
Se3这种拓扑绝缘体材料做薄并且进行磁性掺杂,就有可能能够实现量子霍尔电阻为h/(ve2)的量子反常霍尔效应。这个理论预言被常翠祖等人通过实验证实。

因此,研究组通过第一性原理预测:K0.5RhO2中可能存在一种新的QAHE—即QTHE。该效应的特别之处在于:它不需要自旋轨道耦合,也不需要系统具有净磁矩或者铁磁性,完全可以在净磁矩为零的反铁磁材料中实现QAHE。该工作为实验上寻找其它的QAHE体系提供了新的思路。

  常翠祖等人需要战胜一系列非常困难的材料问题。量子反常霍尔效应要求材料的体导电和表面导电通道完全被抑制掉。上面理论预言的Bi2
Se3体系,由于存在不可避免的Se空位缺陷导致的高浓度的电子型掺杂,不能满足实现量子反常霍尔效应的要求。为了避免这个问题,他们选择了

该工作得到了国家重点基础研究发展计划和团队自然科学基金委项目等基金的支持。

论文连接:

(现代工程与应用科学学院 科学技术处)

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图